

ENGINEERING | ENVIRONMENTAL | SURVEYING

Corporate Office

One Merchants Plaza Suite 701 Bangor, ME 04401 T: 207.989.4824 F: 207.989.4881

HALEYWARD.COM

Stormwater Report

Road Realignment

280 Between the Lakes Road Salisbury, Connecticut

PREPARED FOR: Great Falls Construction

June 18, 2024 JN: 4010128.001

Report Prepared By: Haley Ward, Inc. 140 Willow Street, Suite 8 | Winsted, Connecticut 06098

TABLE OF CONTENTS

Project Description

List of Exhibits

Watershed Map

Runoff Coefficients

Time of Concentration Calculations

Pipe Sizing Calculations

Riprap Preformed Scour Hole

Water Quality Volume Calculations

Project Description

This project involves the relocation of a portion of Between the Lakes Road. Several measures will be taken to improve stormwater quality. Runoff will be collected in catch basins and directed to two water quality basins that will capture the Water Quality Volume before the runoff is released to the lake.

The storm sewer network is sized for the 10-year storm based on the Rational Method.

The riprap outlet is sized based on the Connecticut Department of Transportation Drainage Manual.

The stormwater basins are sized for the Water Quality Volume based on the 2024 DEEP Stormwater Quality Manual.

PROJECT: Road Realignment, 280 Between The Lakes Road , Salisbury, CT

SUBJECT: Runoff Coefficient Worksheet

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

Runoff Coefficients per ConnDOT Drainage Manual - Chapter 6:

Table 6-3 - Recommended Coefficients for Pervious Areas:

	NRCS Hydrologic Soil Group										
Slope	A	В	с	D							
Flat: (0%-1%)	0.04 - 0.09	0.07 - 0.12	0.11 - 0.16	0.15 - 0.20							
Ave.: (2%-6%)	0.09 - 0.14	0.12 - 0.17	0.16 - 0.21	0.20 - 0.25							
Steep: (> 6%)	0.13 - 0.18	0.18 - 0.24	0.23 - 0.31	0.28 - 0.38							

Table 6-5 - Runoff Coefficients for Impervious Areas

Asphalt	Concrete	Drives &	
Streets	Streets	Walks	Roofs
0.70 - 0.95	0.80 - 0.95	0.75 - 0.85	0.75 - 0.95

Table 6-4 - Recommended Coefficients for Various Selected Land Uses:

	Neighbor-	Single	Multi	Multi		Resi-	Apartment	Light	Heavy	Parks &		Rail	Un-
Downtown	hood	Family	Units	Units		dential	Dwelling	Industrial	Industrial	Cemetery	Play-	Yard	Improved
Areas	Areas	Areas	Detached	Attached	Suburban	(>1.2 Ac.)	Areas	Areas	Areas		grounds	Areas	Areas
0.70 - 0.95	0.50 - 0.70	0.30 - 0.50	0.40 - 0.60	0.60 - 0.75	0.25 - 0.40	0.30 - 0.45	0.50 - 0.70	0.50 - 0.80	0.60 - 0.90	0.10 - 0.25	0.20 - 0.40	0.20 - 0.40	0.10 - 0.30

Calculate Composite Runoff Coefficient and Adjust for Infrequent Storms:

		Asphalt	Grass	Woods							C _A - Runoff	Coefficient A	djusted for In	nfrequent Storr	ms
		Streets	HSG B	HSG B	Water	Other	Check		Composite			Recurre	ence Interval		
	Total	(Acres)	(Acres)	(Acre)	(Acre)	(Acres)	S Area		Runoff	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
Area	Area	C =	C =	C =	C =	C =	(Acres)	SAxC	Coefficient	C _F =	C _F =	C _F =	Max.C _F =	Max.C _F =	Max.C _F =
I.D.	(Acres)	0.90	0.17	0.22	0.90				C'	1.00	1.00	1.00	1.10	1.20	1.25
Watershed 1	4.18	0.46					ERROR	0.413	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
CB-1	3.01	0.45		2.56			3.01	0.968	0.32	0.32	0.32	0.32	0.35	0.39	0.40
CB-2	1.50	0.24	1.01	0.25			1.50	0.443	0.30	0.30	0.30	0.30	0.32	0.35	0.37
Swale-1	1.25	0.15	1.07		0.03		1.25	0.344	0.28	0.28	0.28	0.28	0.30	0.33	0.34
Watershed 5	0.37	0.13					ERROR	0.116	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Total	10.31	1.43					ERROR	1.285	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
% Imper	vious	14%													

(1) Area of individual cover types measured from plans

(2) Runoff coefficient for individual cover types selected from reference tables above.

(3) Composite Runoff Coefficient C' = $S(A \times C) / SA$

(4) Frequency Factors (C_F) from ConnDOT Drainage Manual 2000 - Table 6-2

(5) Per ConnDOT Drainage Manual 2000 Section 6.9.5: $C_A = 1.00$ where C' * $C_F >= 1.00$ $C_A = C' * C_F$ where C' * $C_F < 1.00$

(6) Watershed 1 will be directed away from the lake.

(7) Watershed 5 does not drain to the stormwater basins.

SUBJECT: Time of Concentration Calculations

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

Watershed I.D.: CB-1

Estimate Time of Concentration using the "Velocity Method".

Reference: USDA-NRCS National Engineering Handbook - Part 630 -Hydrology; Chapter 15 - Time of Concentration and USDA-NRCS TR-55 - June 1986

	SHEET	FLOW				
Step No.	Data	Seg. I.D.:	1	Seg. I.D.:	2]
1A	Select Surface Description Identifier (Table 3-1)	F				
1B	Surface Description (Table 3-1)	Grass: Dense Grasses				
2	Manning's Roughness Coefficient "n" (Table 3-1)	0.240				
3	Flow Length "L" (FT) - Note: Total L must be <= 100 FT	80				
4	Two-Year 24-Hour Rainfall "P2" (Inches)	3.0	9			
5	Land Slope "S" (FT / FT)	0.01	L4			T _T =
6	Travel Time "T _T " (Hours)	0.23	34			0.234

$$T_{\rm T} = \frac{0.007 \text{ x } (\text{n x L})^{0.8}}{P_2^{0.5} \text{ x S}^{0.4}}$$

NRCS TR-55 Table 3-1

		Manning's
Identifier	Surface Description	"n"
Α	Smooth Surfaces (Conc., Asph., Grav., Bare Soil)	0.011
В	Fallow (No Residue)	0.050
С	Cultivated Soils (Residue Cover <= 20%)	0.060
D	Cultivated Soils (Residue Cover > 20%)	0.170
Е	Grass: Short Grass Prairie	0.150
F	Grass: Dense Grasses	0.240
G	Grass: Bermuda Grass	0.410
Н	Range (Natural)	0.130
Ι	Woods: Light Underbrush	0.400
J	Woods: Dense Underbrush	0.800

SHALLOW CONCENTRATED FLOW

				Segme	ent I.D.		
Step No.	Data	3	4	5	6	7	8
7	Surface Description (Paved or Unpaved)	U	U	Р	Р		
8	Flow Length "L" (FT)	83	67	141	100		
9	Watercourse Slope "S" (FT/FT)	0.0770	0.1540	0.0730	0.0080		
10	Average Velocity "V" (FT/SEC) Figure 3-1	4.48	6.33	5.49	1.82		
11	Travel Time "T _T " (Hours)	0.005	0.003	0.007	0.015		
т.	_ L Unpaved Condition:	•	Paved Cond	ition:		Τ _T =	0.030
11.	$3600 \times V$ V = 16.1345 x S ^{0.5}		V = 20.3282	x S ^{0.5}			

SUBJECT: Time of Concentration Calculations

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

OPEN CHANNEL FLOW

Note: Hydraulic properties estimated from the worksheets that follow below.

					Segment I.D.			
Step No.	Data	7	8	9	10	11	12	13
12A	Channel or Pipe Flow? (C or P)	С						
12B	Cross Sectional Flow Area (SF)	1.08						
13	Wetted Perimeter (FT)	15.00						
14	Hydraulic Radius (FT)	0.07						
14	Channel or Pipe Slope (FT/FT)	0.1020						
16	Manning's Roughness Coefficient	0.026						
17	Velocity (FT/SEC)	3.16						
18	Flow Length (L) (FT)	348						
19	Travel Time " T_T " (Hours)	0.031						
	т_ L						Τ _T =	0.031

$$T_{T} = \frac{L}{3600 \times V}$$

Step 20: Watershed Time of Concentration (Add T_T from Steps 6, 11, and 19):

Notes:

1. The sum of all sheet-flow travel lengths is <= 100 FT as recommended in NRCS NEH Part 630 Chapter 15.

2. The sum of sheet-flow travel length is <= 10% of total hydraulic length (OK)

3. The sheet flow travel time is less than 80% of Tc (OK)

4. The sum of shallow-concentrated flow segment lengths is < 1,000 FT (OK)

PROJECT:	Road Reali	gnment, 280 I	Betweer	n The Lakes Road
SUBJECT:	Time of Co	ncentration C	Calculati	ons
COMP. BY:	CG	СНК. ВҮ:	TAP	DATE: 06/18/24

The following worksheets estimate velocity and flow rate for a channel with simple geometry or a round storm sewer. The calculations are used to estimate travel time for open-channel flow conditions. Individual segments may be either channel flow or pipe flow, but not both.

- <u>Notes:</u> 1. Flow rate in the various segments should gradually build (in general proportion to drainage area) toward the computed two-year recurrence-interval flood at the point of analysis.
 - 2. In the case of flow in natural or man-made channels, flow depth should not exceed bank-full height.

Storm Sewer

Open Channel Segments

					Segment I.D	•		
	Item	7	8	9	10	11	12	13
Channel Channel Hydraulics Geometry	Flow Depth (FT)	0.12						
	Channel Slope (FT/FT)	0.1020						
anr	Manning's Roughness Coefficient	0.026						
Ch Geo	Bank Slope (Z:1)	50.00						
	B - Channel Base Width (FT)	3.00						
Channel Channel Hydraulics Geometry	T - Flow Top Width (FT)	15						
cs –	Flow Area (SF)	1.08						
nne auli	Wetted Perimeter (FT)	15.00						
chai /dra	Hydraulic Radius (FT)	0.072						
ΟŤ	Flow (CFS)	3.41						
	Average Velocity (FT/SEC)	3.16						

Pipe Segments

					Segment I.D.			
	ltem	7	8	9	10	11	12	13
	Pipe Diameter (FT)							
istic	Pipe Manning's Coefficient							
ter	Pipe Slope (FT/FT)							
arac	Full Pipe Area (SF)							0.0000
châ	Hydraulic Radius - Full Pipe (FT)							0.000
be	Q _{FULL} - Full Pipe Flow (CFS)							#DIV/0!
Ē	V _{FULL} - Full Pipe Velocity (FT/SEC)							#DIV/0!
	R _D - Flow Depth Ratio							
	Flow Depth (FT)							0.00
lics	Cross Sectional Area of Flow (SF)							0.000
raul	Wetted Perimeter (FT)							0.000
lydi	Hydraulic Radius (FT)							#DIV/0!
e T	Q - Estimated Flow in Pipe (CFS)							#DIV/0!
Pip	V - Estimated Velocity in Pipe (FT/SEC)							#DIV/0!
	Q / Q _{FULL}							#DIV/0!
	V / V _{FIII}							#DIV/0!

SUBJECT: Time of Concentration Calculations

COMP. BY: CG CHK. BY: TAP DATE: 6/181/2024

Watershed I.D.: CB-2

Estimate Time of Concentration using the "Velocity Method".

Reference: USDA-NRCS National Engineering Handbook - Part 630 -Hydrology; Chapter 15 - Time of Concentration and USDA-NRCS TR-55 - June 1986

	SHEET	FLOW					
				1 1		1	
Step No.	Data	Seg. I.D.:	1	Seg. I.D.:	2		
1A	Select Surface Description Identifier (Table 3-1)	F	F		1		
1B	Surface Description (Table 3-1)	Grass: Den					
2	Manning's Roughness Coefficient "n" (Table 3-1)	0.2	40				
3	Flow Length "L" (FT) - Note: Total L must be <= 100 FT	30					
4	Two-Year 24-Hour Rainfall "P ₂ " (Inches)	3.0	09				
5	Land Slope "S" (FT / FT)	0.0	25			T _T =	
6	Travel Time " T_{T} " (Hours)	0.0	84			0.084	

$$\Gamma_{\rm T} = \frac{0.007 \, {\rm x} \, {\rm (n \, x \, L)}^{0.8}}{{\rm P_2}^{0.5} \, {\rm x \, S}^{0.4}}$$

NRCS	TR-55	Tahlo	3-1
INNUS	10-22	Table	2-T

		Manning's
Identifier	Surface Description	"n"
А	Smooth Surfaces (Conc., Asph., Grav., Bare Soil)	0.011
В	Fallow (No Residue)	0.050
С	Cultivated Soils (Residue Cover <= 20%)	0.060
D	Cultivated Soils (Residue Cover > 20%)	0.170
Е	Grass: Short Grass Prairie	0.150
F	Grass: Dense Grasses	0.240
G	Grass: Bermuda Grass	0.410
Н	Range (Natural)	0.130
Ι	Woods: Light Underbrush	0.400
J	Woods: Dense Underbrush	0.800

SHALLOW CONCENTRATED FLOW

		Segment I.D.						
Step No.	Data	3	4	5	6	7	8	
7	Surface Description (Paved or Unpaved)	U	U	Р				
8	Flow Length "L" (FT)	82	99	64				
9	Watercourse Slope "S" (FT/FT)	0.0250	0.1020	0.1530				
10	Average Velocity "V" (FT/SEC) Figure 3-1	2.55	5.15	7.95				
11	Travel Time "T _T " (Hours)	0.009	0.005	0.002				
т.	_ L Unpaved Condition:		Paved Cond	ition:		Τ _T =	0.016	
11.	$3600 \times V$ V = 16.1345 x S ^{0.5}		V = 20.3282	x S ^{0.5}		•		

SUBJECT: Time of Concentration Calculations

COMP. BY: CG CHK. BY: TAP DATE: 6/181/2024

OPEN CHANNEL FLOW

Note: Hydraulic properties estimated from the worksheets that follow below.

					Segment I.D.			
Step No.	Data	7	8	9	10	11	12	13
12A	Channel or Pipe Flow? (C or P)	С						
12B	Cross Sectional Flow Area (SF)	5.40						
13	Wetted Perimeter (FT)	15.06						
14	Hydraulic Radius (FT)	0.36						
14	Channel or Pipe Slope (FT/FT)	0.0750						
16	Manning's Roughness Coefficient	0.400						
17	Velocity (FT/SEC)	0.51						
18	Flow Length (L) (FT)	37						
19	Travel Time " T_T " (Hours)	0.020						
	т_ L						Τ _T =	0.020

$$T_{T} = \frac{L}{3600 \times V}$$

Step 20: Watershed Time of Concentration (Add T_T from Steps 6, 11, and 19):

Notes:

1. The sum of all sheet-flow travel lengths is <= 100 FT as recommended in NRCS NEH Part 630 Chapter 15.

2. The sum of sheet-flow travel length is <= 10% of total hydraulic length (OK)

3. The sheet flow travel time is less than 80% of Tc (OK)

4. The sum of shallow-concentrated flow segment lengths is < 1,000 FT (OK)

 PROJECT:=Road Realignment, 280 Between The Lakes Road

 SUBJECT:
 Time of Concentration Calculations

 COMP. BY:
 CG
 CHK. BY:
 TAP

 DATE:
 6/181/2024

The following worksheets estimate velocity and flow rate for a channel with simple geometry or a round storm sewer. The calculations are used to estimate travel time for open-channel flow conditions. Individual segments may be either channel flow or pipe flow, but not both.

- <u>Notes:</u> 1. Flow rate in the various segments should gradually build (in general proportion to drainage area) toward the computed two-year recurrence-interval flood at the point of analysis.
 - 2. In the case of flow in natural or man-made channels, flow depth should not exceed bank-full height.

Storm Sewer

Open Channel Segments

					Segment I.D			
	Item	7	8	9	10	11	12	13
	Flow Depth (FT)	0.60						
Channel Geometry	Channel Slope (FT/FT)	0.0750						
	Manning's Roughness Coefficient	0.4						
	Bank Slope (Z:1)	10.00						
	B - Channel Base Width (FT)	3.00						
	T - Flow Top Width (FT)	15						
cs –	Flow Area (SF)	5.40						
nne auli	Wetted Perimeter (FT)	15.06						
,dra	Hydraulic Radius (FT)	0.359						
θf	Flow (CFS)	2.77						
	Average Velocity (FT/SEC)	0.51						

Pipe Segments

					Segment I.D.			
	ltem	7	8	9	10	11	12	13
<u>S</u>	Pipe Diameter (FT)							
istic	Pipe Manning's Coefficient							
ter	Pipe Slope (FT/FT)							
arac	Full Pipe Area (SF)							0.0000
châ	Hydraulic Radius - Full Pipe (FT)							0.000
be	Q _{FULL} - Full Pipe Flow (CFS)							#DIV/0!
Ρi	V _{FULL} - Full Pipe Velocity (FT/SEC)							#DIV/0!
	R _D - Flow Depth Ratio							
	Flow Depth (FT)							0.00
lics	Cross Sectional Area of Flow (SF)							0.000
raul	Wetted Perimeter (FT)							0.000
lydi	Hydraulic Radius (FT)							#DIV/0!
e T	Q - Estimated Flow in Pipe (CFS)							#DIV/0!
Pip	V - Estimated Velocity in Pipe (FT/SEC)							#DIV/0!
	Q / Q _{FULL}							#DIV/0!
	V / V _{FIII}							#DIV/0!

SUBJECT: Time of Concentration Calculations

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

Watershed I.D.: Swale-1

Estimate Time of Concentration using the "Velocity Method".

Reference: USDA-NRCS National Engineering Handbook - Part 630 -Hydrology; Chapter 15 - Time of Concentration and USDA-NRCS TR-55 - June 1986

SHEET FLOW										
Chair Nia	Dete					I				
Step No.	Data	Seg. I.D.:	1	Seg. I.D.:	2	ļ				
1A	Select Surface Description Identifier (Table 3-1)	F	-							
1B	Surface Description (Table 3-1)	Grass: Dense Grasses								
2	Manning's Roughness Coefficient "n" (Table 3-1)	0.240								
3	Flow Length "L" (FT) - Note: Total L must be <= 100 FT	3	33							
4	Two-Year 24-Hour Rainfall "P2" (Inches)	3.09								
5	Land Slope "S" (FT / FT)	0.0	10			T _T =				
6	Travel Time "T _T " (Hours)	0.1	.32			0.132				

$$\Gamma_{\rm T} = \frac{0.007 \, {\rm x} \, {\rm (n \, x \, L)}^{0.8}}{{\rm P_2}^{0.5} \, {\rm x \, S}^{0.4}}$$

NRCS TR-55 Table 3-1

		Manning's
Identifier	Surface Description	"n"
Α	Smooth Surfaces (Conc., Asph., Grav., Bare Soil)	0.011
В	Fallow (No Residue)	0.050
С	Cultivated Soils (Residue Cover <= 20%)	0.060
D	Cultivated Soils (Residue Cover > 20%)	0.170
Е	Grass: Short Grass Prairie	0.150
F	Grass: Dense Grasses	0.240
G	Grass: Bermuda Grass	0.410
Н	Range (Natural)	0.130
Ι	Woods: Light Underbrush	0.400
J	Woods: Dense Underbrush	0.800

SHALLOW CONCENTRATED FLOW

		Segment I.D.						
Step No.	Data	3	4	5	6	7	8	
7	Surface Description (Paved or Unpaved)	U	U	Р				
8	Flow Length "L" (FT)	12	60	62				
9	Watercourse Slope "S" (FT/FT)	0.0100	0.1200	0.0740				
10	Average Velocity "V" (FT/SEC) Figure 3-1	1.61	5.59	5.53				
11	Travel Time "T _T " (Hours)	0.002	0.003	0.003				
т.	_ L Unpaved Condition:		Paved Cond	ition:		Τ _T =	0.008	
11.	3600 x V V = 16.1345 x S ^{0.5}		V = 20.3282	x S ^{0.5}				

SUBJECT: Time of Concentration Calculations

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

OPEN CHANNEL FLOW

Note: Hydraulic properties estimated from the worksheets that follow below.

					Segment I.D.			
Step No.	Data	7	8	9	10	11	12	13
12A	Channel or Pipe Flow? (C or P)	С	С					
12B	Cross Sectional Flow Area (SF)	1.00	0.56					
13	Wetted Perimeter (FT)	7.02	5.61					
14	Hydraulic Radius (FT)	0.14	0.10					
14	Channel or Pipe Slope (FT/FT)	0.1180	0.0130					
16	Manning's Roughness Coefficient	0.150	0.011					
17	Velocity (FT/SEC)	0.93	3.31					
18	Flow Length (L) (FT)	92	85					
19	Travel Time " T_T " (Hours)	0.028	0.007					
	τ_ L						Τ _T =	0.035

$$T_{T} = \frac{L}{3600 \times V}$$

Step 20: Watershed Time of Concentration (Add T_T from Steps 6, 11, and 19):

Notes:

1. The sum of all sheet-flow travel lengths is <= 100 FT as recommended in NRCS NEH Part 630 Chapter 15.

2. The sum of sheet-flow travel length is <= 10% of total hydraulic length (OK)

3. The sheet flow travel time is less than 80% of Tc (OK)

4. The sum of shallow-concentrated flow segment lengths is < 1,000 FT (OK)

PROJECT: Road Realignment, 280 Between The Lakes Road							
SUBJECT:	Time of Co	ncentration C	Calculatio	ons			
COMP. BY:	CG	CHK. BY:	TAP	DATE: 06/18/24			

The following worksheets estimate velocity and flow rate for a channel with simple geometry or a round storm sewer. The calculations are used to estimate travel time for open-channel flow conditions. Individual segments may be either channel flow or pipe flow, but not both.

- <u>Notes:</u> 1. Flow rate in the various segments should gradually build (in general proportion to drainage area) toward the computed two-year recurrence-interval flood at the point of analysis.
 - 2. In the case of flow in natural or man-made channels, flow depth should not exceed bank-full height.

Storm Sewer

Open Channel Segments

		Segment I.D.						
	Item	7	8	9	10	11	12	13
	Flow Depth (FT)	0.20	0.13					
Channel Geometry	Channel Slope (FT/FT)	0.1180	0.0130					
	Manning's Roughness Coefficient	0.15	0.011					
	Bank Slope (Z:1)	10.00	10.00					
	B - Channel Base Width (FT)	3.00	3.00					
	T - Flow Top Width (FT)	7	5.6					
C –	Flow Area (SF)	1.00	0.56					
nne auli	Wetted Perimeter (FT)	7.02	5.61					
Chai /dra	Hydraulic Radius (FT)	0.142	0.100					
θŕ	Flow (CFS)	0.93	1.85					
	Average Velocity (FT/SEC)	0.93	3.31					

Pipe Segments

					Segment I.D.			
	ltem	7	8	9	10	11	12	13
S	Pipe Diameter (FT)							
istic	Pipe Manning's Coefficient							
ter	Pipe Slope (FT/FT)							
arac	Full Pipe Area (SF)							0.0000
châ	Hydraulic Radius - Full Pipe (FT)							0.000
be	Q _{FULL} - Full Pipe Flow (CFS)							#DIV/0!
Ē	V _{FULL} - Full Pipe Velocity (FT/SEC)							#DIV/0!
	R _D - Flow Depth Ratio							
	Flow Depth (FT)							0.00
lics	Cross Sectional Area of Flow (SF)							0.000
raul	Wetted Perimeter (FT)							0.000
lydi	Hydraulic Radius (FT)							#DIV/0!
e T	Q - Estimated Flow in Pipe (CFS)							#DIV/0!
Pip	V - Estimated Velocity in Pipe (FT/SEC)							#DIV/0!
	Q / Q _{FULL}							#DIV/0!
	V / V _{FIII}							#DIV/0!

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	с	Тс		Rain	Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	To		Incr	Total	-coem	Incr	Total	Inlet	Syst	(1)	TIOW	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	LINE	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
4	Final	C1 1	1.50	4 5 4	0.20	0.45	1 4 1	7.0	10.0	20	E 14	0.05	1.04	15	1.04	729.40	720.10	720.49	740.02	720.40	741.20	Dine from CD 2
	Ena	40.0	1.50	4.51	0.30	0.45	0.00	18.0	10.2	3.0	5.14	0.95	4.94	15	1.04	730.10	739.10	739.10	740.02	739.40	741.20	Dine from CD 1
2	1	46.3	3.01	3.01	0.32	0.96	0.96	18.0	18.0	3.7	3.52	1.21	4.09	15	1.08	739.10	/39.60	740.02	/40.36	741.20	/41.80	Pipe from CB-1
Proje	ct File:	128.00	1 Propos	sed Stori	m Draina	ige.stm										Number	of lines: 2			Run Da	te: 5/13/20)24
	ES:Inte	nsity = 3	80.48 / (I	nlet time	e + 3.30)	^ 0.69; I	Return p	eriod =Y	′rs. 10;	c = cir	e = ellip	b = box										

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb Ir	let	Gra	te Inlet				G	utter					Inlet		Вур
NO		(cfs)	carry (cfs)	capt (cfs)	вур (cfs)	туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	–Line No
1	CB-2	2.72	0.00	2.72	0.00	DrGrt	0.0	0.00	3.12	1.35	2.31	Sag	2.00	0.020	0.020	0.013	0.25	27.17	0.25	27.17	0.0	Off
2	CB-1	3.52	0.00	1.01	2.52	DrGrt	0.0	0.00	0.00	1.35	2.31	0.020	2.00	0.020	0.020	0.013	0.14	16.10	0.14	16.10	0.0	Off
Drain														Nursh	of lime -					E /10/000		
Projec	at File: 128.001 Prop	osed Stori	m Draina	ige.stm										Number	ot lines:	2			un Date:	5/13/202	4	
NOTE	:S: Inlet N-Values = (0.016; Inte	ensity = 3	30.48 / (I	nlet time	+ 3.30) ′	` 0.69 ;	Return p	eriod = 1	10 Yrs. ;	* Indica	tes Knov	vn Q ado	ded.All c	urb inlets	s are thr	oat.					

Storm Sewer Profile

PROJECT: Road Realignment, 280 Between The Lakes Road
SUBJECT: Peformed Scour Hole Design- Basin 2

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

Structure:	Basin #2		
<u>Data Input:</u>			
Q =	5.33	CFS	Design discharge
$S_P =$	1.20	FT	Circular pipe I.D. or maximum inside span for non-circular pipe
$R_{P} =$	1.20	FT	Maximum inside pipe rise. Set $R_P = S_P$ for circular sections
INV _{OUT} =	732.50	FT	Elevation of invert at culvert outlet
$E_{TW} =$	732.79		Elevation of tailwater at culvert outlet
TW =	0.29	FT	Tail water depth

Available Riprap Sizes:

From ConnDOT Drainage Manual 2000 - Table 7-2 & FHWA - HEC-11 Design of Riprap Revetments

T 11		
Type No.	Description	D ₅₀ (FI)
1	Special Riprap	0.083
2	Modified Riprap	0.417
3	Intermediate Riprap	0.667
4	Facing Riprap	0.950
5	Standard Riprap	1.250
6	Light Riprap	1.300
7	Quarter-Ton Riprap	1.800
8	Half-Ton Riprap	2.250
9	One-Ton Riprap	2.850
10	Two-Ton Riprap	3.600

				PROJECT: R	load Rea	lignment, 2	80 Between T	he Lakes Road
•				SUBJECT: P	eformed	Scour Hole	Design- Basir	12
				COMP. BY:	CG	CHK. BY:	TAP	DATE: 06/18/24
Structure:	Basin #	2						
For Type 1 F	reforme	ed Scou	ur Hole (De	epression = 0.5 R _P):				
d ₅₀ =	0.31	FT	d ₅₀	$_{\rm D}$ = (0.0125 R _P ² / TW) x	(Q / R _P ^{2.5}) ^{1.333}		
		_	Mi	nimum riprap size rea	quired for	a stable sco	ur hole	
Select Type	: 3		Interme	diate Riprap	D ₅₀ =	0.667	-T	
Comment:	OK - DS	50 Size	for selecte	ed riprap equals or e	xceeds m	inimum requ	uired D50 size	
2S _P =	2.4	FT	Flo	or Width				
3S _P =	3.6	FT	Flo	or Length				
F =	0.60	FT	Ba	sin Depression: F = 0.	5R _P for Typ	be 1 Preform	ed Scour Hole	
C =	7.2	FT	Ba	sin Length: C = $3S_P$ +	6F			
В =	6.0	FT	Ba	sin Inlet and Outlet V	Vidth B = 2	2S _P + 6F		
For Type 2 F	reforme	ed Scou	ur Hole (De	epression = 1.0 R _P):				
d ₅₀ =	0.21	FT	d ₅₀	$_{\rm D}$ = (0.0082 ${\rm R_P}^2$ / TW) x	(Q / R _P ^{2.5})	1.333		
			Mi	nimum riprap size rea	quired for	a stable sco	ur hole	
Select Type	: 3		Interme	diate Riprap	D ₅₀ =	0.667	-T	
Comment:	OK - DS	50 Size	for selecte	ed riprap equals or e	exceeds m	inimum requ	uired D50 size	
2S _P =	2.4	FT	Flo	or Width				
3S _P =	3.6	FT	Flo	or Length				
F =	1.2	FT	Ba	sin Depression: F = 1.	0 R _P for Ty	pe 2 Preform	ned Scour Hole	
C =	10.8	FT	Ba	sin Length: C = $3S_P$ +	6F			
В =	9.6	FT	Ba	sin Inlet and Outlet V	Vidth B = 2	2S _P + 6F		

PROJECT: Road Realignment, 280 Between The Lakes Road
SUBJECT: Peformed Scour Hole Design- Basin 2

COMP. BY: CG CHK. BY: TAP DATE: 06/18/24

Structure: Basin #2

Figure 11-15 from ConnDOT Drainage Manual 2000

Figure 11-15 Preformed Scour Hole Type 1 and Type 2

PROJECT: Road Realignment, 280 Between The Lakes Road , Salisbury, CT

 SUBJECT:
 Water Quality Volume and Flow Calculations

 COMP. BY:
 CG
 CHK. BY:
 TAP
 DATE:
 06/18/24

I. Determine Volume of Water Quality Basin

WQV = (1.3"(R)(A))/12 Where:

WQV	=	Water Quality Volume (ac-ft)
R	=	Volumetric Runoff Coefficient
	=	0.05+0.009(I)
I	=	Percent Impervious Cover (whole number)
А	=	Site Area (acres) = Watershed area excluding bottom of basin

Watershed	Area (acres)	Impervious	Coefficient	Volume (ac-ft)	Volume (CF)
CB-1	3.01	15	0.18	0.0602	2,621
CB-2	1.50	16	0.19	0.0315	1,373
Swale-1	1.25	12	0.16	0.0214	932
Total	5.76	15	0.18	0.1131	4,927

GRV = ((D)(A)(I))/12

GRV

D

= Groundwater Recharge Volume

= Depth of Runoff to be Recharged (Table 7.4 of Stormwater Quality Manual)

A = Site Area (acres)

Where:

I = Percent Impervious Cover (decimal)

Watershed Number	Watershed Area (acres)	Percent Impervious	Groundwater Recharge Depth (D)	Groundwater Recharge Volume (ac.ft)	Groundwater Recharge Volume (CF)
					-
1	5.76	0.15	0.25	0.0175	762

Table 7.4		
NRCS Hydrologic Soil Group	Average Annual Recharge	Groundwater Recharge Depth (D)
A	18 in/year	0.4 inch
В	12 in/year	0.25 inch
С	6 in/year	0.1 inch
D	3 in/year	0 inch

For Hydrologic Soil Group, see Web Soil Survey

The majority of development occurs over soil with hydrologic group B For Design Use WQV since it is higher than ${\sf GRV}$

Volume of Proposed Water Quality Basin #1

Contour Elevation	Elevation Difference (ft)	Area (sq. ff.)	Volume (CF)	Cumulative Volume (CF)
736.0	-	1,354		
737.6	1.6	3,257	3,689	3,689

Volume of Proposed Water QualityBasin #2

Contour Elevation	Elevation Difference (ft)	Area (sq. ff.)	Volume (CF)	Cumulative Volume (CF)
735.0	-	857		
736.0	1.0	2,828	1,843	1,843
Total Storage	e Volume Avail	<u>able</u>	Total	\rightarrow