

Stormwater Report

Kenneth and Elizabeth Burdick

152 South Shore Road

Salisbury, CT

March 21, 2025

JN: 4010218.22157.1

Prepared By: Haley Ward, Inc.

140 Willow Street, Suite 8 | Winsted, Connecticut 06098

Corporate Office

One Merchants Plaza Suite 701 Bangor, ME 04401 T: 207.989.4824 F: 207.989.4881

HALEYWARD.COM

Table of Contents

Introduction	1
Site Description	1
Proposed Project	1
Stormwater Management Practices	1
<u>Tables</u>	
Table-1: Impervious Surfaces Summary	2
Table-2: Existing and Proposed Peak Discharge Summary	3

Exhibits

- A. Watershed Maps
- B. Runoff Coefficient and Peak Flow Calculations
- C. USDA Soil Classification Map
- D. Rain Garden Volume Calculations
- E. Permeable Patio Design

Introduction

The owners of the parcel located at 152 South Shore Road intend to demolish and remove the existing house, garage, subsurface sewage disposal system, and the retaining walls located outside the 75-foot upland review area. Stormwater runoff ultimately reaches Lake Washining, which borders the parcel on the northerly side.

Site Description

The project is located on an existing fully developed parcel at the southern shore of Lake Washining. The proposed development will take place within the currently developed areas generally described as follows:

- The property lies in the R-20 Zone and the Lake Protection Overlay District.
- The parcel currently is predominately covered by buildings and lawn (grass) with some mature trees.
- There are Open Water wetlands (Lake Washining) on the northerly side of the site.
- The property generally slopes northerly toward the lake at varying grades of 2% to 15%.
- South Shore Road crosses the southern portion of the Parcel.

Stormwater runoff leaves the site as shallow concentrated flow to the west (Drainage Area-1), to the east (Drainage Area-3, and north (Drainage Area-2). The runoff discharge from these three areas enter to Lake Washining. A small portion on the southern end of the site (Drainage Area-4) flows to an existing catch basin located in South Shore Road which discharges to a swale on the neighboring property and eventually discharges to Lake Washining.

Proposed Project

The project involves the demolition discussed above and the construction of a new, three-bedroom dwelling with an attached garage, decks, and associated utilities. A new subsurface sewage disposal system will be constructed, and the existing driveway will be reconfigured.

Stormwater Management Practices

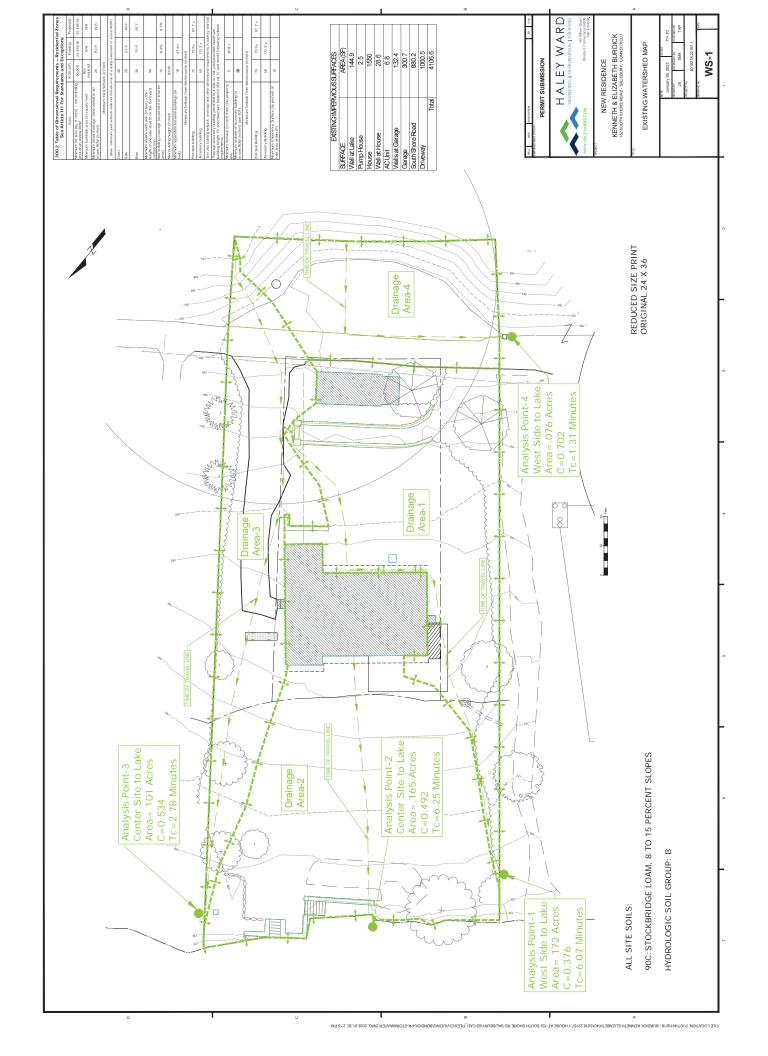
The project uses the following stormwater management practices:

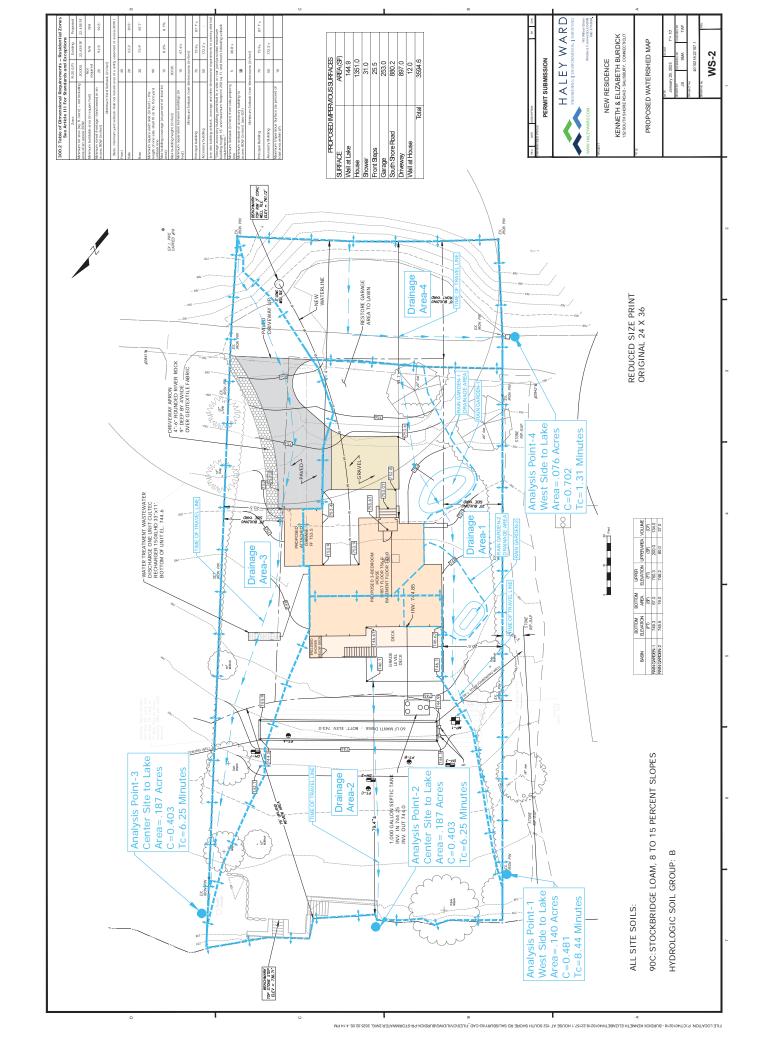
 Low Impact Development: The project is designed using Low Impact Development techniques, such as keeping site disturbance to the minimum required and reducing the existing impervious surfaces to the extent practical. Table-1 below and the Watershed Maps in Appendix A present additional details for both existing and proposed site conditions.

- Rain Gardens: The site uses two rain gardens to capture and treat the runoff from most of the rooftop and the gravel portion of the driveway.
- Maintaining Site Hydrology: The existing drainage patterns are maintained with runoff being directed to essentially the same locations as under pre-development conditions.
- Crushed Stone Border: A crushed stone border will be installed along the northeast side of the driveway to reduce erosion and promote infiltration.

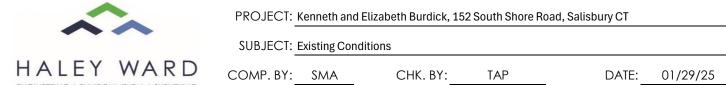
Table-1: Impervious Surfaces Summary

EXISTING IMPERVIOUS S	SURFACES	PROPOSED IMPERVIOUS SURFACES			
SURFACE	AREA (SF)	SURFACE	AREA (SF)		
Wall at Lake		Wall at Lake	144.9		
Pump House		House	1351.0		
House		Shower	31.0		
Wall at House	Per Survey	Front Steps	25.5		
AC Unit	prepared by	Garage	253.0		
Walls at Garage	Lamb Kiefer	South Shore Road	880.2		
Garage		Driveway	897.0		
South Shore Road		Wall at House	12.0		
Driveway					
Existing Total	4053	Proposed Total	3594.6		


 By reducing the total impervious surfaces by approximately 459 square feet (11.3%), the total site peak discharge rate for the proposed conditions two-year, ten-year, twenty-five-year and one-hundred-year design storms are less than the peak discharge rates for the existing conditions. The peak discharge rates for existing and proposed conditions are shown in Table-2, below. See Appendix B for runoff coefficient and peak flow calculations.


Table-2: Existing and Proposed Peak Discharge Summary

	Peak Discharge Storm Summary							
Design Storm	Existing Discharge	Proposed Discharge	Proposed Reduction					
(Year)	(CFS)	(CFS)	(CFS)					
Analysis Point-1								
2	0.29	0.26	0.03					
10	0.42	0.38	0.04					
25	0.56	0.49	0.07					
100	0.79	0.70	0.09					
Analysis Point-2								
2	0.36	0.33	0.03					
10	0.52	0.38	0.03					
25	0.69	0.64	0.05					
100	0.98	0.91	0.07					
Analysis Point-3								
2	0.26	0.26	0.00					
10	0.38	0.38	0.00					
25	0.49	0.50	-0.01					
100	0.70	0.71	-0.01					
Analysis Point-4								
2	0.25	0.25	0.00					
10	0.37	0.37	0.00					
25	0.49	0.49	0.00					
100	0.69	0.69	0.00					
Entire Site								
2	1.16	1.10	0.06					
10	1.69	1.62	0.07					
25	2.23	2.12	0.11					
100	3.16	3.04	0.14					


Normally, we would not present the resulting flows to two significant digits as the modeling techniques are not that precise. In this case, because the flows are so small and the differences so minor, the flows are carried to the hundredths of CFS to demonstrate that the post development flow is at or below the predevelopment flow across the range of storm frequencies.

A. Watershed Maps

B. Runoff Coefficient and Peak Discharge Calculations

SUBJECT: Existing Conditions

HALEY WARD COMP.	BY: SMA	CHK. BY:	TAP	DATE:	01/29/25	_							
Time of Concentration Worksheet													
		Drainage Area-1		Di	ainage Area-2		Di	ainage Area-3			Drainage Area-4		
Sheet Flow			Segment			Segment			Segment			Segment	
		1	2	3	1	2	3	1	2	3	1	2	3
$Tt = \frac{0.007 (nL)^{0.8}}{(P2)^{0.5} S^{0.4}}$	n=	0.24			0.24			0.4	0.011		0.24	0.011	
(P2) ^{0.5} S ^{0.4}	L=	74			88.5			25	75		6	78	
Tt = travel time (hr)	P2=	3.07			3.07			3.07	3.12		3.07	3.12	
n = Manning's roughness coefficient (table 3-1)	S=	0.114			0.130			0.448	0.117		0.571	0.026	
L = flow length (ft)	Tt=	0.095		0.000	0.104	0.000	0.000	0.035	0.008	0.000	0.007	0.015	0.000
P2 = 2-year, 24-hour rainfall (in)			Total Time (hr)	0.095		Total Time (hr)	0.104		Total Time (hr)	0.043		Total Time (hr)	0.022
S=slope of hydraulic grade line (land slope, ft/ft)													
Shallow concentrated Flow Travel			Segment			Segment			Segment			Segment	
		1	2	3	1	2	3	1	2	3	1	2	3
	Paved-Unpaved	U						Р	U				
3600V	Slope	0.092						0.080	0.109				
	L=	106						35	103				
Tt = Travel Time (hr)	V=	5						5.7	5.5				
L = Flow Length	Tt=	0.006	0.000	0.000	0.000	0.000	0.000	0.002	0.005	0.000	0.000	0.000	0.000
V = Avergae Velocity (ft/s) 3600 = conversion from seconds to hours			Total Time (hr)	0.006		Total Time (hr)	0.000		Total Time (hr)	0.007		Total Time (hr)	0.000
Open Channel Flow (Manning)			Segment			Segment			Segment			Segment	
		1	2	3	1	2	3	1	2	3	1	2	3
V= 1.49(r^(2/3))s^1/2	a=												
n	Pw=												
n = Manning's roughness coefficient (table 3-1)	r=[
S=slope of hydraulic grade line (land slope, ft/ft)	s=												
r= hydraulic radius = a/Pw	n=												
a=cross sectional flow area (sq ft)	V=												
Pw = Wetted Perimeter (ft)	Flow Length=												
	Tt												
			Total Time (hr)	0		Total Time (hr)	0		Total Time (hr)	0		Total Time (hr)	0
				2.42			2.42						
USE 5 MINUTES MINIMUM			vel Time (Tc)(Hrs.)=	0.10		vel Time (Tc)(Hrs.)=	0.10		vel Time (Tc)(Hrs.)=	0.05		avel Time (Tc)(Hrs.)=	0.02
			/el Time (Tc)(Min.)=	6.07		vel Time (Tc)(Min.)=	6.25		vel Time (Tc)(Min.)=	2.98		avel Time (Tc)(Min.)=	1.31
	-	2 year 10 year			2 year	 			4.76			ar 4.76	
	-	25 year			10 year 25 year			10 yea 25 yea				ar 6.96 ar 8.33	
	}	25 year 100 year			25 year 100 year			25 yea 100 yea			25 yea 100 yea		
		100 year	J. 4		100 year	J. 4		100 yea	10.4		100 yea	11 10.4	

Drainage

Surface

SUBJECT: Existing Conditions

COMP. BY: SMA CHK. BY: TAP DATE: 01/29/25

Peak Flow Rate by Rational Method

Rational:

Q = CIA

A = Watershed Area (acres)

C = Runoff Coefficient

I = Rain Fall Intensity (In/Hr.)

Q = Peak Discharge (cfs)

	Composite				
	Runoff	Drainage	Design	Rain Fall	Peak
Drainage Area Label	Coefficient	Area	Storm	Intensity	Discharge
		(Acres)	(Year)	(In/Hr)	(CFS)
Drainage Area-1	0.376	0.172	2	4.47	0.29
Drainage Area-2	0.492	0.165	2	4.42	0.36
Drainage Area-3	0.534	0.101	2	4.76	0.26
Drainage Area-4	0.702	0.076	2	4.76	0.25
				Total	1.16
Drainage Area-1	0.376	0.172	10	6.53	0.42
Drainage Area-2	0.492	0.165	10	6.45	0.52
Drainage Area-3	0.534	0.101	10	6.96	0.38
Drainage Area-4	0.702	0.076	10	6.96	0.37
				Total	1.69
Drainage Area-1	0.414	0.172	25	7.81	0.56
Drainage Area-2	0.541	0.165	25	7.72	0.69
Drainage Area-3	0.587	0.101	25	8.33	0.49
Drainage Area-4	0.772	0.076	25	8.33	0.49
				Total	2.23
Drainage Area-1	0.470	0.172	100	9.76	0.79
Drainage Area-2	0.615	0.165	100	9.65	0.98
Drainage Area-3	0.6675	0.101	100	10.40	0.70
Drainage Area-4	0.8775	0.076	100	10.40	0.69
				Total	3.16

	0 000	7 0 (0 0 .)	
Area			Avg. C
			Value
DA-1	Imp. Area	0.011	0.95
	Trees	0.020	0.25
	Grass	0.141	0.35
	Composite	0.172	0.38
DA-2	Imp. Area	0.039	0.95
	Trees	0.000	0.25
	Grass	0.126	0.35
	Composite	0.165	0.49
DA-3	Imp. Area	0.032	0.95
	Trees	0.010	0.25
	Grass	0.059	0.35
	Composite	0.101	0.53
DA-4	Imp. Area	0.049	0.95
	Trees	0.027	0.25
	Grass	0.000	0.35
	Composite	0.076	0.70
Total Area I	Modeled	0.514	Acres
Re	Cf		
	(years)		
	25		1.1
	50		1.2
	100		1.25

Area (acres)

Notes:

- 1) Runoff Coefficient estimated by Haley Ward (see separate calculations)
- 2) Rainfall Intensity calculated by Haley Ward for D = Tc (see separate calculations)
- 3) Drainage area delineated by Haley Ward and measured using AutoCAD software (see separate watershed delineation)

Runoff Coefficients per ConnDOT Drainage Manual - Chapter 6:

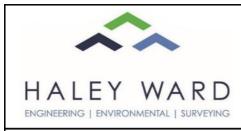
Table 6-3 - Recommended Coefficients for Pervious Areas:

Site Soils NRCS Hydrologic Soil Group: B

	NRCS Hydrologic Soil Group						
Slope	Α	В	С	D			
Flat: (0%-1%)	0.04 - 0.09	0.07 - 0.12	0.11 - 0.16	0.15 - 0.20			
Ave.: (2%-6%)	0.09 - 0.14	0.12 - 0.17	0.16 - 0.21	0.20 - 0.25			
Steep: (> 6%)	0.13 - 0.18	0.18 - 0.24	0.23 - 0.31	0.28 - 0.38			

<u>Table 6-5 - Runoff Coefficients for Impervious Areas</u>

Asphalt	Concrete	Drives &	
Streets	Streets	Walks	Roofs
0.70 - 0.95	0.80 - 0.95	0.75 - 0.85	0.75 - 0.95


<u>Table 6-4</u> Recommended Coefficients for Various Selected Land Uses:

	Neighbor-	Single	Multi	Multi
Downtown	hood	Family	Units	Units
Areas	Areas	Areas	Detached	Attached
0.70 - 0.95	0.50 - 0.70	0.30 - 0.50	0.40 - 0.60	0.60 - 0.75
	Resi-	Apartment	Light	Heavy
	dential	Dwelling	Industrial	Industrial
Suburban	(>1.2 Ac.)	Areas	Areas	Areas
0.25 - 0.40	0.30 - 0.45	0.50 - 0.70	0.50 - 0.80	0.60 - 0.90
Parks &		Rail	Un-	
Cemetery	Play-	Yard	Improved	
	grounds	Areas	Areas	
0.10 - 0.25	0.20 - 0.40	0.20 - 0.40	0.10 - 0.30	

SUBJECT: Proposed Conditions

SUBJECT. Proposed	Conditions											
HALEY WARD COMP. BY: SMA	CHK. BY	·:	DATE:	01/29/25								
Time of Concentration Worksheet												
	Drainage Area-1		D	rainage Area-2		D	rainage Area-3			Drainage Area-4		
Sheet Flow		Segment			Segment			Segment			Segment	
	1	2	3	1	2	3	1	2	3	1	2	3
Tt= 0.007 (nL) ^{0.8}	n= 0.24			0.24			0.4	0.011	0.11	0.24	0.011	
(Day 0.5 a 0.4	_= 100			88.5			26	25	46	6	78	
Tt = travel time (hr)				3.07			3.07	3.12	3.12	3.07	3.12	
` '	S= 0.084			0.130			0.385	0.080	0.120	0.571	0.026	
L = flow length (ft)			0.000	0.104	0.000	0.000	0.038	0.004		0.007	0.015	0.000
P2 = 2-year, 24-hour rainfall (in)		Total Time (hr)	0.137		Total Time (hr)	0.104		Total Time (hr)	0.042		Total Time (hr)	0.022
S=slope of hydraulic grade line (land slope, ft/ft)		(/ /			\ /			\ /			(/ /	
Shallow concentrated Flow Travel		Segment			Segment			Segment			Segment	
	1	2	3	1	2	3	1	2	3	1	2	3
Tt = L Surface Paved-Unpave	ed U						U					
3600V Slop							0.109					
	_= 80						142.5					
Tt = Travel Time (hr)	/= 5.6						5.2					
L = Flow Length Tt	t= 0.004		0.000	0.000	0.000	0.000	0.008		0.000	0.000	0.000	0.000
V = Avergae Velocity (ft/s)		Total Time (hr)	0.004		Total Time (hr)	0.000		Total Time (hr)	0.008		Total Time (hr)	0.000
3600 = conversion from seconds to hours Take V from From Table												
Open Channel Flow (Manning)		•										
Company of the Compan		Segment			Segment			Segment			Segment	
	1	Segment 2	3	1	Segment 2	3	1	Segment 2	3	1	Segment 2	3
V= 1.49(r^(2/3))s^1/2	1	Segment 2	3	1	Segment 2	3	1	Segment 2	3	1	Segment 2	3
V= <u>1.49(r^(2/3))s^1/2</u> a n Pw	3=		3	1		3	1		3	1		3
n Pw	3=		3	1		3	1		3	1		3
n = Manning's roughness coefficient (table 3-1)	y=]=		3	1		3	1		3	1		3
n Pw n = Manning's roughness coefficient (table 3-1) S=slope of hydraulic grade line (land slope, ft/ft) s	g= v= r=		3	1		3	1		3	1		3
n Pw n = Manning's roughness coefficient (table 3-1) S=slope of hydraulic grade line (land slope, ft/ft) r= hydraulic radius = a/Pw n	a= /= r= 6=		3	1		3	1		3	1		3
n Pw n = Manning's roughness coefficient (table 3-1) r S=slope of hydraulic grade line (land slope, ft/ft) s r= hydraulic radius = a/Pw n a=cross sectional flow area (sq ft) v	a= v= r= s= n= /=		3	1		3	1		3	1		3
n Pw n = Manning's roughness coefficient (table 3-1) r S=slope of hydraulic grade line (land slope, ft/ft) s r= hydraulic radius = a/Pw a=cross sectional flow area (sq ft) V	a= v= r= s= n= /=		3	1		3	1		3	1		3
n Pw n = Manning's roughness coefficient (table 3-1) r S=slope of hydraulic grade line (land slope, ft/ft) s r= hydraulic radius = a/Pw a=cross sectional flow area (sq ft) V	a= v= r= s= n= /=		3	1		3	1		0	1		0
n Pw n = Manning's roughness coefficient (table 3-1) r S=slope of hydraulic grade line (land slope, ft/ft) s r= hydraulic radius = a/Pw n a=cross sectional flow area (sq ft) v	a= v= r= s= n= /= n= Tt	2			2			2			2	
n Pw n = Manning's roughness coefficient (table 3-1) r S=slope of hydraulic grade line (land slope, ft/ft) s r= hydraulic radius = a/Pw a=cross sectional flow area (sq ft) V	a= v= r= s= n= v= Tt Total Tra	2 Total Time (hr)	0	Total Trav	2 Total Time (hr)	0	Total Tra	2 Total Time (hr)	0	Total Tra	2 Total Time (hr)	0
n Pw n = Manning's roughness coefficient (table 3-1) r S=slope of hydraulic grade line (land slope, ft/ft) s r= hydraulic radius = a/Pw n a=cross sectional flow area (sq ft) v	a= v= v= r= s= n= /= n= Tt Total Tra Total Tra	Total Time (hr) avel Time (Tc)(Hrs.)=	0 0.14	Total Trav	Total Time (hr) rel Time (Tc)(Hrs.)= el Time (Tc)(Min.)=	0 0.10	Total Tra Total Tra	Total Time (hr)	0 0.05	Total Tra	Total Time (hr)	0 0.02
n Pw n = Manning's roughness coefficient (table 3-1) r S=slope of hydraulic grade line (land slope, ft/ft) s r= hydraulic radius = a/Pw a=cross sectional flow area (sq ft) V	a= v= v= r= s= n= /= n= Tt Total Tra Total Tra	Total Time (hr) avel Time (Tc)(Hrs.)= avel Time (Tc)(Min.)= ar 3.8	0 0.14	Total Trav Total Trav	Total Time (hr) rel Time (Tc)(Hrs.)= rel Time (Tc)(Min.)= 4.429	0 0.10	Total Tra Total Tra	Total Time (hr) evel Time (Tc)(Min.)= r 4.76	0 0.05	Total Tra	Total Time (hr) avel Time (Tc)(Hrs.)= vel Time (Tc)(Min.)= r 4.76	0 0.02
n Pw n = Manning's roughness coefficient (table 3-1) S=slope of hydraulic grade line (land slope, ft/ft) s=hydraulic radius = a/Pw a=cross sectional flow area (sq ft) Pw = Wetted Perimeter (ft) Flow Length	Total Tra	Total Time (hr) avel Time (Tc)(Hrs.)= avel Time (Tc)(Min.)= avel Time (Tc)(Min.)= avel Time (Tc)(Min.)=	0 0.14	Total Trav Total Trav 2 year	Total Time (hr) rel Time (Tc)(Hrs.)= el Time (Tc)(Min.)= 4.429 6.473	0 0.10	Total Tra Total Tra 2 yea	Total Time (hr) evel Time (Tc)(Hrs.)= vel Time (Tc)(Min.)= r 4.76 r 6.96	0 0.05	Total Tra Total Tra 2 yea	Total Time (hr) evel Time (Tc)(Hrs.)= evel Time (Tc)(Min.)= r 4.76 r 6.96	0 0.02

SUBJECT: Proposed Conditions

DATE: 01/29/25 COMP. BY: SMA CHK. BY: TAP

Peak Flow Rate by Rational Method

Q = CIA

Rational:

A = Watershed Area (acres)

C = Runoff Coefficient

I = Rain Fall Intensity (In/Hr.)

Q = Peak Discharge (cfs)

	Composite		1	Ι	I
	Runoff	Drainaga	Doolan	Rain Fall	Peak
Duringer Americans		Drainage	Design		
Drainage Area Label	Coefficient	Area	Storm	Intensity	Discharge
		(Acres)	(Year)	(In/Hr)	(CFS)
Drainage Area-1	0.481	0.140	2	3.81	0.26
Drainage Area-2	0.403	0.187	2	4.43	0.33
Drainage Area-3	0.490	0.112	2	4.76	0.26
Drainage Area-4	0.702	0.076	2	4.76	0.25
				Total	1.11
Dualina da Ana a 4	0.404	0.440	40	5.50	0.00
Drainage Area-1	0.481	0.140	10	5.56	0.38
Drainage Area-2	0.403	0.187	10	6.45	0.49
Drainage Area-3	0.490	0.112	10	6.96	0.38
Drainage Area-4	0.702	0.076	10	6.96	0.37
				Total	1.61
Drainage Area-1	0.529	0.140	25	6.66	0.49
Drainage Area-2	0.443	0.147	25	7.72	0.64
Drainage Area-3	0.539	0.112	25	8.33	0.50
Drainage Area-4	0.772	0.076	25	8.33	0.49
				Total	2.13
Drainage Area-1	0.601	0.140	100	8.33	0.70
Drainage Area-2	0.503	0.187	100	9.65	0.91
Drainage Area-3	0.613	0.112	100	10.4	0.71
Drainage Area-4	0.877	0.076	100	10.4	0.69
				Total	3.02

Drainage Area	Surface	Area (acres)	Avg. C Value
DA-1	Imp. Area	0.034	0.95
	Trees	0.020	0.25
	Grass	0.086	0.35
	Composite	0.140	0.48
DA-2	Imp. Area	0.016	0.95
	Trees	0.000	0.25
	Grass	0.170	0.35
	Composite	0.187	0.40
DA-3	Imp. Area	0.028	0.95
	Trees	0.010	0.25
	Grass	0.075	0.35
	Composite	0.112	0.49
DA-4	Imp. Area	0.049	0.95
	Trees	0.027	0.25
	Grass	0.000	0.35
	Composite	0.076	0.70
Total Area N	Modeled	0.515	Acres
Re	currence Inter	val	Cf
	(years)		
	25		1.1
	50		1.2
	100		1.25

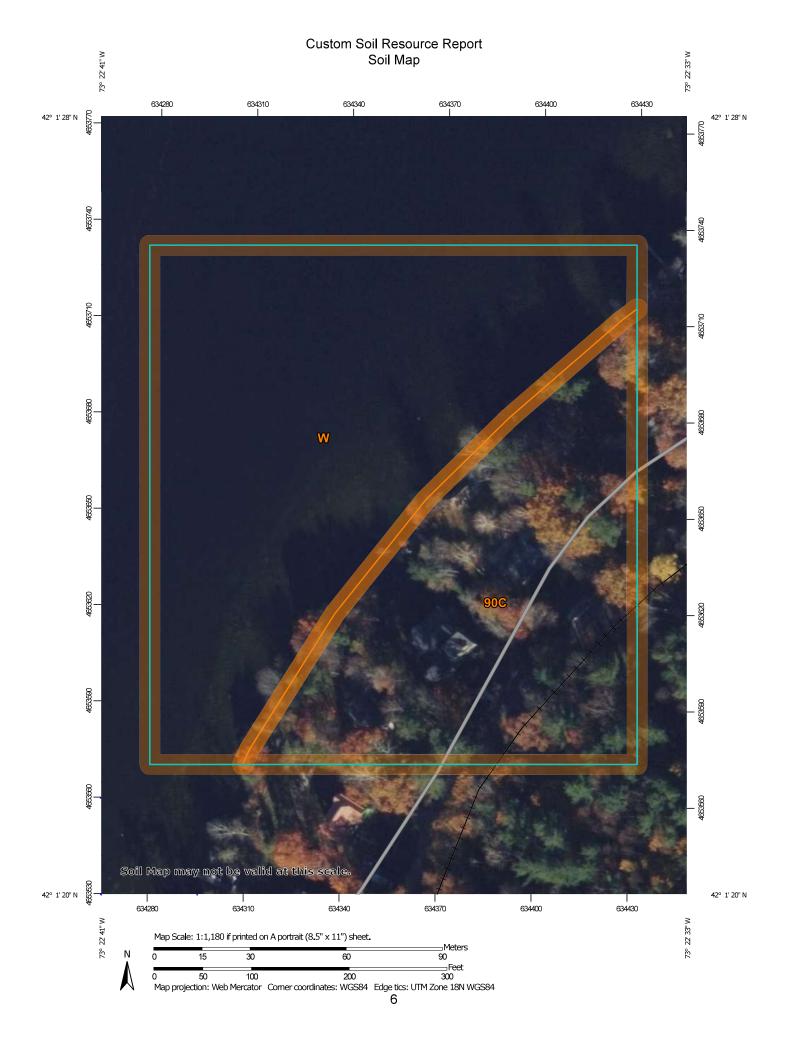
- 1) Runoff Coefficient estimated by Haley Ward (see separate calculations)
- 2) Rainfall Intensity calculated by Haley Ward for D = Tc (see separate calculations)
- 3) Drainage area delineated by Haley Ward and measured using AutoCAD software (see separate watershed delineation)

Runoff Coefficients per ConnDOT Drainage Manual - Chapter 6:

<u>Table 6-3 - Recommended Coefficients for Pervious Areas:</u>

Site Soils NRCS Hydrologic Soil Group: B

	NRCS Hydrologic Soil Group			
Slope	Α	В	С	D
Flat: (0%-1%)	0.04 - 0.09	0.07 - 0.12	0.11 - 0.16	0.15 - 0.20
Ave.: (2%-6%)	0.09 - 0.14	0.12 - 0.17	0.16 - 0.21	0.20 - 0.25
Steep: (> 6%)	0.13 - 0.18	0.18 - 0.24	0.23 - 0.31	0.28 - 0.38


Table 6-5 - Runoff Coefficients for Impervious Areas

Asphalt	Concrete	Drives &	
Streets	Streets	Walks	Roofs
0.70 - 0.95	0.80 - 0.95	0.75 - 0.85	0.75 - 0.95

Table 6-4

Recommended Coefficients for Various Selected Land Uses:						
	Neighbor-	Single	Multi	Multi		
Downtown	hood	Family	Units	Units		
Areas	Areas	Areas	Detached	Attached		
0.70 - 0.95	0.50 - 0.70	0.30 - 0.50	0.40 - 0.60	0.60 - 0.75		
	Resi-	Apartment	Light	Heavy		
	dential	Dwelling	Industrial	Industrial		
Suburban	(>1.2 Ac.)	Areas	Areas	Areas		
0.25 - 0.40	0.30 - 0.45	0.50 - 0.70	0.50 - 0.80	0.60 - 0.90		
Parks &		Rail	Un-			
Cemetery	Play-	Yard	Improved			
	grounds	Areas	Areas			
0.10 - 0.25	0.20 - 0.40	0.20 - 0.40	0.10 - 0.30			

C. USDA Soils Map

State of Connecticut, Western Part

90C—Stockbridge loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9lrs Elevation: 0 to 1,200 feet

Mean annual precipitation: 43 to 54 inches Mean annual air temperature: 45 to 55 degrees F

Frost-free period: 140 to 185 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Stockbridge and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Stockbridge

Setting

Landform: Hills

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Coarse-loamy till derived from limestone and

dolomite and/or schist

Typical profile

Ap - 0 to 10 inches: loam
Bw1 - 10 to 20 inches: loam
Bw2 - 20 to 28 inches: loam
C1 - 28 to 42 inches: gravelly loam
C2 - 42 to 48 inches: gravelly loam

C3 - 48 to 65 inches: gravelly loam

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent

Available water supply, 0 to 60 inches: Moderate (about 8.4

inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: F144AY036NY - Semi-Rich Well Drained Till

Uplands

Hydric soil rating: No

Minor Components

Mudgepond

Percent of map unit: 5 percent

Landform: Depressions, drainageways

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Georgia

Percent of map unit: 5 percent

Landform: Hills

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Alden

Percent of map unit: 3 percent

Landform: Depressions, drainageways Down-slope shape: Concave, linear Across-slope shape: Concave

Hydric soil rating: Yes

Nellis

Percent of map unit: 3 percent

Landform: Hills

Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Farmington

Percent of map unit: 2 percent

Landform: Hills, ridges
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

Paxton

Percent of map unit: 2 percent Landform: Till plains, drumlins, hills

Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

Data Source Information

Soil Survey Area: State of Connecticut, Western Part

Survey Area Data: Version 2, Aug 30, 2024

D. Rain Garden Volume Calculations

SUBJECT: Water Quality Volume Calculations RAIN GARDEN 1

COMP. BY: SMA CHK. BY: TAP DATE: 02/05/25

I. Determine Volume of Water Quality Basin

WQV = (1.3"(R)(A))/12 Where:

WQV = Water Quality Volume (ac-ft)
R = Volumetric Runoff Coefficient

= 0.05+0.009(I)

Percent Impervious Cover (whole number)

A = Site Area (acres) = Watershed area excluding bottom of basin

Watershed	Watershed Area (acres)	Percent Impervious	Volumetric Runoff Coefficient	Water Quality Volume (ac-ft)	Water Quality Volume (CF)
					-
To Rain Garden-1	0.07	28	0.30	0.0024	105

Total Required 105

GRV = ((D)(A)(I))/12 Where:

GRV = Groundwater Recharge Volume

D = Depth of Runoff to be Recharged (Table 7.4 of Stormwater Quality Manual)

A = Site Area (acres)

I = Percent Impervious Cover (decimal)

Watershed Number	Watershed Area (acres)	Percent Impervious	Groundwater Recharge Depth (D)	Groundwater Recharge Volume (ac.ft)	Groundwater Recharge Volume (CF)
To Rain Garden-1	0.07	0.28	0.25	0.0004	19

Table 7.4

Tuble 7.4		
NRCS Hydrologic Soil Group	Average Annual Recharge	Groundwater Recharge Depth (D)
Α	18 in/year	0.4 inch
В	12 in/year	0.25 inch
С	6 in/year	0.1 inch
D	3 in/year	0 inch

For Hydrologic Soil Group, see Web Soil Survey
The majority of development occurs over soil with hydrologic group B
For Design Use WQV since it is higher than GRV

Volume of Proposed Rain Garden-1 For New House

Contour Elevation	Elevation Difference (ft)	Area (sq. ff.)	Volume (CF)	Cumulative Volume (CF)
749.3	-	67		
750.3	1.0	200	134	
			-	134

Greater Than 105 CF, OKAY

SUBJECT: Water Quality Volume Calculations RAIN GARDEN 2

COMP. BY: SMA CHK. BY: TAP DATE: 02/05/25

I. Determine Volume of Water Quality Basin

WQV = (1.3"(R)(A))/12 Where:

WQV = Water Quality Volume (ac-ft)
R = Volumetric Runoff Coefficient

= 0.05+0.009(I)

= Percent Impervious Cover (whole number)

A = Site Area (acres) = Watershed area excluding bottom of basin

Watershed	Watershed Area (acres)	Percent Impervious	Volumetric Runoff Coefficient	Water Quality Volume (ac-ft)	Water Quality Volume (CF)
					-
To Rain Garden-2	0.01	42	0.43	0.0006	28

Total Required 28

GRV = ((D)(A)(I))/12 Where:

GRV = Groundwater Recharge Volume

D = Depth of Runoff to be Recharged (Table 7.4 of Stormwater Quality Manual)

A = Site Area (acres)

I = Percent Impervious Cover (decimal)

Watershed Number	Watershed Area (acres)	Percent Impervious	Groundwater Recharge Depth (D)	Groundwater Recharge Volume (ac.ft)	Groundwater Recharge Volume (CF)
To Rain Garden-2	0.01	0.42	0.25	0.0001	5

For Hydrologic Soil Group, see Web Soil Survey
The majority of development occurs over soil with hydrologic group B

For Design Use WQV since it is higher than GRV

Volume of Proposed Rain Garden-2 For New House

	<u> </u>			
Contour Elevation	Elevation Difference (ft)	Area (sq. ft.)	Volume (CF)	Cumulative Volume (CF)
745.45	-	19		
746.20	0.75	80	37	
			-	37

Greater Than 28 CF, OKAY

Table 7.4

IUDIC 7.4		
NRCS Hydrologic Soil Group	Average Annual Recharge	Groundwater Recharge Depth (D)
Α	18 in/year	0.4 inch
В	12 in/year	0.25 inch
С	6 in/year	0.1 inch
О	3 in/year	0 inch

E. Permeable Patio Design

PROJECT: Kenneth and Elizabeth Burdick, 152 South Shore Road, Salisbury C	v CT
---	------

SUBJECT: Permeable Patio Design

 COMP. BY:
 TAP
 CHK. BY:
 DATE:
 03/21/25

I. Determine Water Quality Volume Required

WQV = (1.3"(R)(A))/12 Where:

WQV = Water Quality Volume (ac-ft)

R = Volumetric Runoff Coefficient

= 0.05+0.009(I)

I = Percent Impervious Cover (whole number)
A = Site Area (acres) = Area of Patio 580 SF

Watershed	Watershed Area (acres)	Percent Impervious	Volumetric Runoff Coefficient	Water Quality Volume (ac-ft)	Water Quality Volume (CF)
					-
Patio Area	0.0133	100	0.95	0.0014	60

Total Required 60

II. Soil Conditions

The underlying soil is Stockbridge Loam, Class B

Test pits reveal bedrock is deeper than 70" and seasonal high groundwater (SHGW) is an average of 41"

The finished grade at the patio is the same as the existing grade.

The depth of the patio system will be 16"

At 16", the bottom will be more than 3 feet above bedrock

At 16", the bottom will be 25" above SHGW, 24" is recommended for residential applications

III. Volume of Reservoir

The reservoir is 6 inches of crushed stone with an estimated void ratio of 35%

Area (SF) Void ratio (% Depth (ft) Volume (CF)

580 35% 0.5 101.5 > 60, okay

Permeable Patio Design.xlsx Page 1 of 1